Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.024
Filtrar
1.
Arch Microbiol ; 206(5): 212, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616221

RESUMEN

Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.


Asunto(s)
Bacteriófagos , Biopelículas , Animales , Humanos , Percepción de Quorum , Antibacterianos/farmacología , Matriz Extracelular
2.
ACS Appl Bio Mater ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622845

RESUMEN

Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.

3.
Front Pharmacol ; 15: 1350391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628638

RESUMEN

Pseudomonas aeruginosa biofilm is a community of bacteria that adhere to live or non-living surfaces and are encapsulated by an extracellular polymeric substance. Unlike individual planktonic cells, biofilms possess a notable inherent resistance to sanitizers and antibiotics. Overcoming this resistance is a substantial barrier in the medical and food industries. Hence, while antibiotics are ineffective in eradicating P. aeruginosa biofilm, scientists have explored alternate strategies, including the utilization of natural compounds as a novel treatment option. To this end, curcumin, carvacrol, thymol, eugenol, cinnamaldehyde, coumarin, catechin, terpinene-4-ol, linalool, pinene, linoleic acid, saponin, and geraniol are the major natural compounds extensively utilized for the management of the P. aeruginosa biofilm community. Noteworthy, the exact interaction of natural compounds and the biofilm of this bacterium is not elucidated yet; however, the interference with the quorum sensing system and the inhibition of autoinducer production in P. aeruginosa are the main possible mechanisms. Noteworthy, the use of different drug platforms can overcome some drawbacks of natural compounds, such as insolubility in water, limited oral bioavailability, fast metabolism, and degradation. Additionally, drug platforms can deliver different antibiofilm agents simultaneously, which enhances the antibiofilm potential of natural compounds. This article explores many facets of utilizing natural compounds to inhibit and eradicate P. aeruginosa biofilms. It also examines the techniques and protocols employed to enhance the effectiveness of these compounds.

4.
J Hazard Mater ; 470: 134300, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38631248

RESUMEN

In this study, the cadmium (Cd)-tolerant Ensifer adhaerens strain NER9 with quorum sensing (QS) systems (responsible for N-acyl homoserine lactone (AHL) production) was characterized for QS system-mediated Cd immobilization and the underlying mechanisms involved. Whole-genome sequence analysis revealed that strain NER9 contains the QS SinI/R and TraI/R systems. Strains NER9 and the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants were constructed and compared for QS SinI/R and TraI/R system-mediated Cd immobilization in the solution and the mechanisms involved. After 24 h of incubation, strain NER9 significantly decreased the Cd concentration in the Cd-contaminated solution compared with the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants. The NER9∆sinI/R mutant had a greater impact on Cd immobilization and a lower impact on the activities of AHLs than did the NER9∆traI/R mutant. The NER9∆sinI/R mutant had significantly greater Cd concentrations and lower cell wall- and exopolysaccharide (EPS)-adsorbed Cd contents than did strain NER9. Furthermore, the NER9∆sinI/R mutant presented a decrease in the number of functional groups interacting with Cd, compared with strain NER9. These results suggested that the SinI/R system in strain NER9 contributed to Cd immobilization by mediating cell wall- and EPS-adsorption in Cd-containing solution.

5.
Nat Prod Res ; : 1-10, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613421

RESUMEN

A novel polycyclic quinazoline alkaloid (1) along with one new natural quinoline alkaloid (2) and two known quinoline alkaloids (3,4) were isolated from the marine-derived fungus Trichoderma longibrachiatum QD01. Structural determinations of those isolates were established by comprehensive spectroscopic analyses and literature comparison. Single-crystal X-ray diffraction analysis of novel compound verified its structure and stereochemistry, representing the first characterised crystal structure of a trimeric-type of tetrahydroquinazoline. Compound 4 exhibited potential antibacterial and anti-quorum sensing activity against C. violaceum and C. violaceum CV026. The sub-MIC of 4 observably decreased the violacein production in C. violaceum CV026 by 55% on 15 µg/mL. Furthermore, molecular docking results revealed that 4 has stronger binding interactions with CviR receptor than ligand C6-HSL with lower binding energy of -8.68 kcal/mol. Hydrogen bond and π-π interactions formed by Trp84, Tyr88, Trp111, and Phe126 were predicted to play an important role in the inhibition against C. violaceum CV026.

6.
Adv Sci (Weinh) ; : e2310079, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613837

RESUMEN

The transition of bacteria from an individualistic to a biofilm lifestyle profoundly alters their biology. During biofilm development, the bacterial cell-cell adhesions are a major determinant of initial microcolonies, which serve as kernels for the subsequent microscopic and mesoscopic structure of the biofilm, and determine the resulting functionality. In this study, the significance of bacterial cell-cell adhesion dynamics on bacterial aggregation and biofilm maturation is elucidated. Using photoswitchable adhesins between bacteria, modifying the dynamics of bacterial cell-cell adhesions with periodic dark-light cycles is systematic. Dynamic cell-cell adhesions with liquid-like behavior improve bacterial aggregation and produce more compact microcolonies than static adhesions with solid-like behavior in both experiments and individual-based simulations. Consequently, dynamic cell-cell adhesions give rise to earlier quorum sensing activation, better intermixing of different bacterial populations, improved biofilm maturation, changes in the growth of cocultures, and higher yields in fermentation. The here presented approach of tuning bacterial cell-cell adhesion dynamics opens the door for regulating the structure and function of biofilms and cocultures with potential biotechnological applications.

7.
Eur J Med Chem ; 271: 116410, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615409

RESUMEN

With the increasing reports of antibiotic resistance in this species, Pseudomonas aeruginosa is a common human pathogen with important implications for public health. Bacterial quorum sensing (QS) systems are potentially broad and versatile targets for developing new antimicrobial compounds. While previous reports have demonstrated that certain amide compounds can inhibit bacterial growth, there are few reports on the specific inhibitory effects of these compounds on bacterial quorum sensing systems. In this study, thirty-one amide derivatives were synthesized. The results of the biological activity assessment indicated that A9 and B6 could significantly inhibit the expression of lasB, rhlA, and pqsA, effectively reducing several virulence factors regulated by the QS systems of PAO1. Additionally, compound A9 attenuated the pathogenicity of PAO1 to Galleria mellonella larvae. Meanwhile, RT-qPCR, SPR, and molecular docking studies were conducted to explore the mechanism of these compounds, which suggests that compound A9 inhibited the QS systems by binding with LasR and PqsR, especially PqsR. In conclusion, amide derivatives A9 and B6 exhibit promising potential for further development as novel QS inhibitors in P. aeruginosa.

8.
Biochem Biophys Res Commun ; 711: 149912, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38615572

RESUMEN

An accessory gene regulator (agr) in the quorum sensing (QS) system in Staphylococcus aureus contributes to host infection, virulence factor production, and resistance to oxidative damage. Artificially maintaining the inactive state of agr QS impedes the host infection strategy of S. aureus and inhibits toxin production. The QS system performs intercellular signal transduction, which is activated by the mature autoinducer peptide (AIP). It is released from cells after AgrD peptide processing as an intercellular signal associated with increased bacterial cell density. This study evaluated the effectiveness of inhibiting agr QS wherein AIP trap carriers were made to coexist when culturing Staphylococcus aureus. Immersing a nitrocellulose (NC) membrane in Staphylococcus aureus ATCC 12600 culture inhibited QS-dependent α-hemolysin production, which significantly reduced the hemolysis ratio of sheep red blood cells by the culture supernatant. A quartz crystal microbalance analysis supported AIP adsorption onto the NC membrane. Adding the NC membrane during culture was found to maintain the expression levels of the agr QS gene agrA and α-hemolysin gene hla lower than that when it was not added. Eliminating extracellular AIP signals allowed agr QS to remain inactive and prevented QS-dependent α-hemolysin expression. Isolating intercellular signals secreted outside the cell is an effective strategy to suppress gene expression in bacterial cells that collaborate via intercellular signaling.

9.
Zhongguo Zhong Yao Za Zhi ; 49(3): 653-660, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621869

RESUMEN

Quorum sensing system regulates the expression of genes related to bacterial growth, metabolism and other behaviors by sensing bacterial density, and controls the unified action of the entire bacterial population. This mechanism can ensure the normal secretion of bacterial metabolites and the stability of the biofilm microenvironment, providing protection for the formation of biofilms and the normal growth and reproduction of bacteria. Traditional Chinese medicine, capable of quorum sensing inhibition, can inhibit the formation of bacterial biofilms, reduce bacterial resistance, and enhance the anti-infection ability of antibiotics when combined with antibiotics. In recent years, the combination of traditional Chinese and Western medicine in the treatment of drug-resistant bacterial infections has become a research hotspot. Starting with the associations between quorum sensing, biofilm and drug-resistant bacteria, this paper reviews the relevant studies about the combined application of traditional Chinese medicines as quorum sensing inhibitors with antibiotics in the treatment of drug-resistant bacteria. This review is expected to provide ideas for the development of new clinical treatment methods and novel anti-infection drugs.


Asunto(s)
Infecciones Bacterianas , Percepción de Quorum , Humanos , Percepción de Quorum/genética , Medicina Tradicional China , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética , Biopelículas , Infecciones Bacterianas/tratamiento farmacológico
10.
J Biosci Bioeng ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38575466

RESUMEN

Some strains of nonpathogenic Allorhizobium vitis can control crown gall disease in grapevines caused by pathogenic A. vitis and are considered candidates for biocontrol agents. Many plant pathogenic bacteria regulate the expression of their virulence genes via quorum sensing using N-acylhomoserine lactone (AHL) as a signaling compound. The eight nonpathogenic A. vitis strains used in this study showed AHL-degrading activity. The complete genome sequence of A. vitis MAFF 212306 contained three AHL lactonase gene homologs. When these genes were cloned and transformed into Escherichia coli DH5α, E. coli harboring the aiiV gene (RvVAR031_27660) showed AHL-degrading activity. The aiiV coding region was successfully amplified by polymerase chain reaction from the genomes of all eight strains of nonpathogenic A. vitis. Purified His-tagged AiiV exhibited AHL lactonase activity by hydrolyzing the lactone ring of AHL. AiiV had an optimal temperature of approximately 30 °C; however, its thermostability decreased above 40 °C. When the AiiV-expressing plasmid was transformed into Pectobacterium carotovorum subsp. carotovorum NBRC 3830, AHL production by NBRC 3830 decreased below the detection limit, and its maceration activity, which was controlled by quorum sensing, almost disappeared. These results suggest the potential use of AHL-degrading nonpathogenic A. vitis for the inhibition of crown gall disease in grapevines and other plant diseases controlled by quorum sensing.

11.
Saudi Pharm J ; 32(5): 102041, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38558886

RESUMEN

The rise of antibiotic resistance in bacteria is becoming a global concern, particularly due to the dwindling supply of new antibiotics. This situation mandates the discovery of new antimicrobial candidates. Plant-derived natural compounds have historically played a crucial role in the development of antibiotics, serving as a rich source of substances possessing antimicrobial properties. Numerous studies have supported the reputation of 6-gingerol, a prominent compound found in the ginger family, for its antibacterial properties. In this study, the antibacterial activities of 6-gingerol were evaluated against Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, with a particular focus on the clinically significant Gram-negative Pseudomonas aeruginosa and Gram-positive bacteria Staphylococcus aureus. Furthermore, the anti-virulence activities were assessed in vitro, in vivo, and in silico. The current findings showed that 6-gingerol's antibacterial activity is due to its significant effect on the disruption of the bacterial cell membrane and efflux pumps, as it significantly decreased the efflux and disrupted the cell membrane of S. aureus and P. aeruginosa. Furthermore, 6-gingerol significantly decreased the biofilm formation and production of virulence factors in S. aureus and P. aeruginosa in concentrations below MICs. The anti-virulence properties of 6-gingerol could be attributed to its capacity to disrupt bacterial virulence-regulating systems; quorum sensing (QS). 6-Gingerol was found to interact with QS receptors and downregulate the genes responsible for QS. In addition, molecular docking, and molecular dynamics (MD) simulation results indicated that 6-gingerol showed a comparable binding affinity to the co-crystalized ligands of different P. aeruginosa QS targets as well as stable interactions during 100 ns MD simulations. These findings suggest that 6-gingerol holds promise as an anti-virulence agent that can be combined with antibiotics for the treatment of severe infections.

12.
BMC Biol ; 22(1): 73, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561772

RESUMEN

BACKGROUND: Quorum sensing (QS) is the ability of microorganisms to assess local clonal density by measuring the extracellular concentration of signal molecules that they produce and excrete. QS is also the only known way of bacterial communication that supports the coordination of within-clone cooperative actions requiring a certain threshold density of cooperating cells. Cooperation aided by QS communication is sensitive to cheating in two different ways: laggards may benefit from not investing in cooperation but enjoying the benefit provided by their cooperating neighbors, whereas Liars explicitly promise cooperation but fail to do so, thereby convincing potential cooperating neighbors to help them, for almost free. Given this double vulnerability to cheats, it is not trivial why QS-supported cooperation is so widespread among prokaryotes. RESULTS: We investigated the evolutionary dynamics of QS in populations of cooperators for whom the QS signal is an inevitable side effect of producing the public good itself (cue-based QS). Using spatially explicit agent-based lattice simulations of QS-aided threshold cooperation (whereby cooperation is effective only above a critical cumulative level of contributions) and three different (analytical and numerical) approximations of the lattice model, we explored the dynamics of QS-aided threshold cooperation under a feasible range of parameter values. We demonstrate three major advantages of cue-driven cooperation. First, laggards cannot wipe out cooperation under a wide range of reasonable environmental conditions, in spite of an unconstrained possibility to mutate to cheating; in fact, cooperators may even exclude laggards at high cooperation thresholds. Second, lying almost never pays off, if the signal is an inevitable byproduct (i.e., the cue) of cooperation; even very cheap fake signals are selected against. And thirdly, QS is most useful if local cooperator densities are the least predictable, i.e., if their lattice-wise mean is close to the cooperation threshold with a substantial variance. CONCLUSIONS: Comparing the results of the four different modeling approaches indicates that cue-driven threshold cooperation may be a viable evolutionary strategy for microbes that cannot keep track of past behavior of their potential cooperating partners, in spatially viscous and in well-mixed environments alike. Our model can be seen as a version of the famous greenbeard effect, where greenbeards coexist with defectors in a evolutionarily stable polymorphism. Such polymorphism is maintained by the condition-dependent trade-offs of signal production which are characteristic of cue-based QS.


Asunto(s)
Señales (Psicología) , Percepción de Quorum , Evolución Biológica , Bacterias , Hidrolasas , Comunicación
13.
Eur J Immunol ; : e2350955, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587967

RESUMEN

Type I interferons (IFN-Is) are key in fighting viral infections, but also serve major roles beyond antiviral immunity. Crucial is the tight regulation of IFN-I responses, while excessive levels are harmful to the cells. In essence, immune responses are generated by single cells making their own decisions, which are based on the signals they perceive. Additionally, immune cells must anticipate the future state of their environment, thereby weighing the costs and benefits of each possible outcome, in the presence of other potentially competitive decision makers (i.e., IFN-I producing cells). A rather new cellular communication mechanism called quorum sensing describes the effect of cell density on cellular secretory behaviors, which fits well with matching the right amount of IFN-Is produced to fight an infection. More competitive decision makers must contribute relatively less and vice versa. Intrigued by this concept, we assessed the effects of immune quorum sensing in pDCs, specialized immune cells known for their ability to mass produce IFN-Is. Using conventional microwell assays and droplet-based microfluidics assays, we were able the characterize the effect of quorum sensing in human primary immune cells in vitro. These insights open new avenues to manipulate IFN-I response dynamics in pathological conditions affected by aberrant IFN-I signaling.

14.
Environ Res ; : 118824, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38588911

RESUMEN

Anaerobic ammonium oxidation (anammox) is a promising biological method for treating nitrogen-rich, low-carbon wastewater. However, the application of anammox technology in actual engineering is easily limited by environmental factors. Considerable progress has been made in recent years in the anammox restoration strategies. The latest progress has significantly helped address the issue of poor reaction performance following the inhibition of anammox. This review systematically outlines the strategies employed to recover anammox performance following inhibition by conventional environmental factors and emerging pollutants. Additionally, strategies aimed at promoting anammox activity and enhancing nitrogen removal performance are comprehensively summarized, offering valuable insights into the current research landscape in this field. The review contributes to a comprehensive understanding of restoration strategies of anammox-based technologies.

15.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585852

RESUMEN

While Pseudomonas aeruginosa LasR plays a role in quorum sensing (QS) across all phylogenetically-distinct lineages, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings including infections where they are associated with worse clinical outcomes. In LasR- strains, another QS transcription factor RhlR can be reactivated in low inorganic phosphate (Pi) concentrations via the two-component system PhoR-PhoB, restoring expression of some of the genes in the QS network. Here, we demonstrate a new link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and raises the Pi concentration necessary for PhoB inhibition. PhoB activity was also less repressed by Pi in mutants lacking different QS regulators (RhlR, and PqsR) and in mutants lacking genes required for the production of QS-regulated phenazines suggesting that decreased phenazine production was one reason for decreased PhoB repression by Pi in LasR-. In addition, the CbrA-CbrB two-component system, which is elevated in LasR- strains, was necessary for reduced PhoB repression by Pi and a Δcrc mutant, which lacks the CbrA-CbrB-controlled translational repressor, activated PhoB at higher Pi concentrations than the in the wild type. The ΔlasR mutant had a PhoB-dependent growth advantage in a medium with no added Pi and increased virulence-determinant gene expression in a medium with 0.7 mM Pi. Reanalysis of published RNA-seq data found evidence for PhoB activity in P. aeruginosa in cystic fibrosis sputum indicating that potential strain differences in PhoB activation may impact disease state.

16.
Front Microbiol ; 15: 1315238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596384

RESUMEN

Biofilms account for a great deal of infectious diseases and contribute significantly to antimicrobial resistance. Efflux pumps confer antimicrobial resistance to microorganisms and involve multiple processes of biofilm formation. Efflux pump inhibitors (EPIs) are attracting considerable attention as a biofilm inhibition strategy. The regulatory functions of efflux pumps in biofilm formation such as mediating adherence, quorum sensing (QS) systems, and the expression of biofilm-associated genes have been increasingly identified. The versatile properties confer efflux pumps both positive and negative effects on biofilm formation. Furthermore, the expression and function of efflux pumps in biofilm formation are species-specific. Therefore, this review aims to detail the double-edged sword role of efflux pumps in biofilm formation to provide potential inhibition targets and give an overview of the effects of EPIs on biofilm formation.

17.
Cell Host Microbe ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38579715

RESUMEN

Many, if not all, bacteria use quorum sensing (QS) to control collective behaviors, and more recently, QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or "listen in" on the host's communication processes, to switch between lytic and lysogenic modes of infection. Here, we study the interaction of Vibrio cholerae with the lysogenic phage VP882, which is activated by the QS molecule DPO. We discover that induction of VP882 results in the binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompetes and downregulates host-encoded small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs, and we demonstrate that one of these sRNAs, named VpdS, promotes phage replication by regulating host and phage mRNA levels. We further show that host-encoded sRNAs can antagonize phage replication by downregulating phage mRNA expression and thus might be part of the host's phage defense arsenal.

18.
Environ Res ; 252(Pt 2): 118835, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582423

RESUMEN

Quorum sensing (QS) is prevalent in activated sludge processes; however, its essential role in the treatment of heavy metal wastewater has rarely been studied. Therefore, in this study, acyl homoserine lactone (AHL)-mediated QS was used to regulate the removal performance, enzyme activity, and microbial community of Cd- and Pb-containing wastewater in a sequencing batch reactor (SBR) over 30 cycles. The results showed that exogenous AHL strengthened the removal of Cd(II) and Pb(II) in their coexistence wastewater during the entire period. The removal of NH4+-N, total phosphorus, and chemical oxygen demand (COD) was also enhanced by the addition of AHL despite the coexistence of Cd(II) and Pb(II). Meanwhile, the protein content of extracellular polymeric substances was elevated and the microbial metabolism and antioxidative response were stimulated by the addition of AHL, which was beneficial for resistance to heavy metal stress and promoted pollutant removal by activated sludge. Microbial sequencing indicated that AHL optimized the microbial community structure, with the abundance of dominant taxa Proteobacteria and Unclassified_f_Enterobacteriaceae increasing by 73.9% and 59.2% maximally, respectively. This study offers valuable insights into the mechanisms underlying Cd(II) and Pb(II) removal as well as microbial community succession under AHL availability in industrial wastewater.

19.
Front Microbiol ; 15: 1368499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638897

RESUMEN

Stringent response and quorum sensing (QS) are two essential mechanisms that control bacterial global metabolism for better survival. Sphingomonads are a clade of bacteria that survive successfully in diverse ecosystems. In silico survey indicated that 36 out of 79 investigated sphingomonads strains contained more than one luxI homolog, the gene responsible for the biosynthesis of QS signal acyl homoserine lactones (AHLs). Investigation of the regulatory effects of the stringent response gene rsh on QS related bioactivities were carried out using rsh mutants of Sphingobium japonicum UT26 and Sphingobium sp. SYK-6, both had three luxI homologs. Results indicated that deletion of rsh upregulated the overall production of AHLs and extracellular polymeric substances (EPS) in both UT26 and SYK-6 in rich medium, but affected expressions of these luxI/luxR homologs in different ways. In the poor medium (1% LB), rsh mutant of SYK-6 significantly lost AHLs production in broth cultivation but not in biofilm cultivation. The regulatory effects of rsh on QS activities were growth phase dependent in UT26 and culture condition dependent in SYK-6. Our results demonstrated the negative regulatory effect of rsh on QS activities in sphingomonads, which were very different from the positive effect found in sphingomonads containing only one luxI/R circuit. This study extends the current knowledge on the intricate networks between stringent response and QS system in sphingomonads, which would help to understand their survival advantage.

20.
Microbiol Res ; 284: 127720, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38640767

RESUMEN

Imbalance in carbon flux distribution is one of the most important factors affecting the further increase in the yield of high value-added natural products in microbial metabolic engineering. Meanwhile, the most common inducible expression systems are difficult to achieve industrial-scale production due to the addition of high-cost or toxic inducers during the fermentation process. Quorum sensing system, as a typical model for density-dependent induction of gene expression, has been widely applied in synthetic biology. However, there are currently few reports for efficient production of microbial natural products by using quorum sensing system to self-regulate carbon flux distribution. Here, we designed an artificial quorum sensing system to achieve efficient production of L-threonine in engineered Escherichia coli by altering the carbon flux distribution of the central metabolic pathways at specific periods. Under the combination of switch module and production module, the system was applied to divide the microbial fermentation process into two stages including growth and production, and improve the production of L-threonine by self-inducing the expression of pyruvate carboxylase and threonine extracellular transporter protease after a sufficient amount of cell growth. The final strain TWF106/pST1011, pST1042pr could produce 118.2 g/L L-threonine with a yield of 0.57 g/g glucose and a productivity of 2.46 g/(L· h). The establishment of this system has important guidance and application value for the production of other high value-added chemicals in microorganisms by self-regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...